skip to main content


Search for: All records

Creators/Authors contains: "Heath, Robert W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reconfigurable arrays mold the propagation en- vironment to benefit wireless systems. We use single-port polarization-reconfigurable antennas in a wideband multiple- input multiple-output (MIMO) system and demonstrate the efficacy of reconfiguration techniques based on analytical channel models. We apply a double-directional channel model to show that polarization reconfiguration acts as an additional precoding step on an unpolarized channel. We use Jensen’s inequality to upper bound the spectral efficiency and leverage the relaxed objective to derive closed-form expressions for the optimal polarization angles at each antenna. We also derive upper bounds on the performance of a polarization reconfigurable system and develop an efficient procedure for polarization reconfiguration that aims to maximize these upper bounds. Numerical results show that the proposed simplified methods achieve near-optimal in wideband MIMO settings. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Beam codebooks are a recent feature to en- able high dimension multiple-input multiple-output in 5G. Codebooks comprised of customizable beamforming weights can be used to transmit reference signals and aid the channel state information (CSI) acquisition process. Codebooks are also used for quantizing feedback follow- ing CSI measurement. In this paper, we unify the beam management stages–codebook design, beam sweeping, feed- back, and data transmission–to characterize the impact of codebooks throughout the process. We then design a neural network to find codebooks that improve the overall system performance. The proposed neural network is built on translating codebook and feedback knowledge into a consistent beamspace basis similar to a virtual channel model to generate initial access codebooks. This beamspace codebook algorithm is designed to directly integrate with current 5G beam management standards without changing the feedback format or requiring additional side infor- mation. Our simulations show that the neural network codebooks improve over traditional codebooks, even in dispersive sub-6GHz environments. We further use our framework to evaluate CSI feedback formats with regard to multi-user spectral efficiency. Our results suggest that optimizing codebook performance can provide valuable performance improvements, but optimizing the feedback configuration is also important in sub-6GHz bands. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Massive multiple-input multiple-output (MIMO) is an important technology in fifth generation (5G) cellular networks and beyond. To help design the beamforming at the base station, 5G has introduced new support in the form of flexible feedback and configurable antenna array geometries that allow for arbitrarily massive phys- ical arrays. In this article, we present an overview of MIMO throughout the mobile standards, highlight the new beam-based feedback system in 5G NR, and de- scribe how this feedback system enables massive MIMO through beam management. Finally, we conclude with challenges related to massive MIMO in 5G. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Dynamic metasurface antennas (DMA) have been proposed for massive multiple-input multiple-output (MIMO) and millimeter wave applications due to their ability to cre- ate dense, energy-efficient arrays. In this paper, we integrate DMAs into a realistic wireless environment to compare their performance in spectral and energy efficiency with a conventional phased array. We implement a practical transmitter architecture for the DMA and phased array to account for the power consumption and hardware constraints of the radio frequency (RF) front end. Simulation results for a MISO scenario show that while the DMA performs worse in spectral efficiency than an active phased array, the power consumption savings from the reconfigurable component enable better performance in energy efficiency. Therefore, DMAs can provide an energy-efficient alternative to typical phased arrays. 
    more » « less
  5. Conventional achievable rate analysis using Shan- non’s theory does not assume practical constraints imposed by Bode-Fano wideband matching theory. This leads to an achiev- able rate bound that cannot be attained by practical matching networks. In this paper, we generalize the information-theoretic achievable rate of a single-input-single-output (SISO) system by incorporating wideband matching constraints at the transmitter. We express the solution to the achievable rate optimization problem in terms of the optimized transmission coefficient and the Lagrangian parameters corresponding to the Bode-Fano inequality constraints. We also propose a practical strategy to design a physically realizable matching network through the ADS software which attains the achievable rate bound with near- optimality. In simulations, we apply this framework to a Chu’s antenna and compare the achievable rate performance with the conventional conjugate matching strategy. 
    more » « less
  6. Cooperative relays improve reliability and coverage in wireless networks by providing multiple paths for data transmission. Relaying will play an essential role in vehicular networks at higher frequency bands, where mobility and frequent signal blockages cause link outages. To ensure connectivity in a relay-aided vehicular network, the relay selection policy should be designed to efficiently find unblocked relays. Inspired by recent advances in beam management in mobile millimeter wave (mmWave) networks, this paper address the question: how can the best relay be selected with minimal overhead from beam management? In this regard, we formulate a sequential decision problem to jointly optimize relay selection and beam management. We propose a joint relay selection and beam management policy based on deep reinforcement learning (DRL) using the Markov property of beam in- dices and beam measurements. The proposed DRL-based algorithm learns time-varying thresholds that adapt to the dynamic channel conditions and traffic patterns. Numeri- cal experiments demonstrate that the proposed algorithm outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm can maintain high spectral efficiency under fast-varying channels. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. Millimeter wave (MmWave) systems are vulnerable to blockages, which cause signal drop and link outage. One solution is to deploy reconfigurable intelligent surfaces (RISs) to add a strong non-line-of-sight path from the transmitter to receiver. To achieve the best performance, the location of the deployed RIS should be optimized for a given site, considering the distribution of potential users and possible blockers. In this paper, we find the optimal location, height and downtilt of RIS working in a realistic vehicular scenario. Because of the proximity between the RIS and the vehicles, and the large electrical size of the RIS, we consider a 3D geometry including the elevation angle and near-field beamforming. We provide results on RIS configuration in terms of both coverage ratio and area-averaged rate. We find that the optimized RIS improves the area-averaged rate fifty percent over the case without a RIS, as well as further improvements in the coverage ratio. 
    more » « less